
The Road to Pattern Matching in Python

Tobias Kohn

Pattern matching is simple. . .

. . . yet versatile and malleable

Pattern Matching
So, what is it really?

Pattern matching. . .

I . . . checks the structure/shape/type of the data

I . . . selects code to handle a specific object

I . . . extracts relevant pieces of information

circle(x, y, radius)
A = π × r2

rectangle(x, y, width, height)
A = w × h

def area(shape):

if isinstance(shape, circle):

radius = shape.radius

return math.pi * radius ** 2

elif isinstance(shape, rectangle):

wd, ht = shape.width, shape.height

return wd * ht

a = area(Circle(40, 50, 100))

def area(shape):

if isinstance(shape, circle):

radius = shape.radius

return math.pi * radius ** 2

elif isinstance(shape, rectangle):

wd, ht = shape.width, shape.height

return wd * ht

a = area(Circle(40, 50, 100))

def area(shape):

if isinstance(shape, circle):

radius = shape.radius

return math.pi * radius ** 2

elif isinstance(shape, rectangle):

wd, ht = shape.width, shape.height

return wd * ht

a = area(Circle(40, 50, 100))

def area(shape):

match shape:

case circle(_, _, radius):

return math.pi * radius ** 2

case rectangle(_, _, wd, ht):

return wd * ht

a = area(Circle(40, 50, 100))

Pattern Matching
1. Run specialised code based on
type and structure of your object;
2. Automatically extract relevant
data/attributes from an object

A Closer Look at the Fabric
How do we make things fit?

Premise data is organised in graphs and trees (using objects)

Example the expression 2 * 34 + 1 has a tree-structure:

BinOp(op=’+’, left=BinOp(’*’, 2, 34), right=1)

Patterns naturally exhibit the same tree-structure as objects, e.g.:

match s:

case BinOp(BinOp(2, ’*’, n), ’+’, 1):

odd number

...

Matching objects to patterns

I attributes are inherently unordered

I how do we map attributes to positions?

I BinOp(x, ’+’, 1) vs BinOp(’+’, x, 1)

I use __match_args__ = (’left’, ’op’, ’right’)

Matching objects to patterns

I attributes are inherently unordered

I how do we map attributes to positions?

I BinOp(x, ’+’, 1) vs BinOp(’+’, x, 1)

I use __match_args__ = (’left’, ’op’, ’right’)

Pattern Matching: Solving The Equation

Can we find values for variables in the pattern
such that the pattern and the subject coincide?

Tales From the Past
The Origins of Pattern Matching

In the beginning was. . .

tuple unpacking

Minimalistic design: a language without field or item access

With strong static types, consider tup = (123, ’abc’)
I tup[0] has type int
I tup[1] has type str
I what type has tup[i]?

In the beginning was. . . tuple unpacking

Minimalistic design: a language without field or item access

With strong static types, consider tup = (123, ’abc’)
I tup[0] has type int
I tup[1] has type str
I what type has tup[i]?

In the beginning was. . . tuple unpacking

Minimalistic design: a language without field or item access

With strong static types, consider tup = (123, ’abc’)
I tup[0] has type int
I tup[1] has type str
I what type has tup[i]?

Question: how do we handle dynamic data structures?

Simply put, each ‘object’ is either a tuple or None, e.g. linked list:

primes = (2, (3, (5, (7, None))))

(x, rest) = mylist

Answer: alternatives / conditional unpacking

def sum(mylist):

result = 0

while True:

match mylist:

case (n, rest):

result += n

mylist = rest

case None:

return result

Answer: alternatives / conditional unpacking

def sum(mylist):

match mylist:

case (m, (n, None)):

return m + n

case (n, rest):

return n + sum(rest)

case None:

return 0

Pattern matching

Extend tuple unpacking to handle dynamic data structures

Changing the Present
The Challenge of Embracing
a New Paradigm

Pattern matching in Python must be:

I isolated
do not affect anything outside the match statement

I familiar
use established syntax and conventions wherever possible

I compatible
work well with existing code

Some immediate consequences

I Introduce a new keyword (match)

I match and case are soft keywords (context-sensitive)

I Patterns [a, b, c] and (a, b, c) are equivalent

I match must be a statement, not an expression

Conditional vs unconditional unpacking

match some_iterator:

case (a, b, c, 0):

...

case (a, b, c, *rest):

...

case x:

do not consume elements from the

iterator in this case

Annotations / type hints

Could we use type hints to specify the type/class of variables?

match some_expr:

case (i: int):

...

case [s: str, t: str]:

...

No – annotations are never enforced by the interpreter

Annotations / type hints

Could we use type hints to specify the type/class of variables?

match some_expr:

case (i: int):

...

case [s: str, t: str]:

...

No – annotations are never enforced by the interpreter

Annotations / type hints

Could we use type hints to specify the type/class of variables?

match some_expr:

case int(i):

...

case [str(s), str(t)]:

...

No – annotations are never enforced by the interpreter

Pattern matching. . .

I is an isolated feature

I strives to reuse existing Python syntax

I still is new and different!

The Meaning of a Name

The meaning of a name

from math import pi

match x:

case pi:

...

How shall we interpret ‘case pi’?

I match only if x = π

I match anything and set pi := x

The meaning of a name

I Languages with declarations (var x = ...) can differentiate

I Others distinguish based on spelling: pi vs Pi

I Only bind local names: pi vs math.pi

← most Pythonic

I Make all names binding targets (i.e. always overwrite pi)

The meaning of a name

I Languages with declarations (var x = ...) can differentiate

I Others distinguish based on spelling: pi vs Pi

I Only bind local names: pi vs math.pi ← most Pythonic

I Make all names binding targets (i.e. always overwrite pi)

The meaning of a name

match mytuple:

case (x, x):

...

case 2 | n:

...

How shall we interpret ‘case (x, x)’?

I Tuple with two equal elements?

I Bind x to the second element?

The meaning of a name

match mytuple:

case (x, x):

...

case 2 | n:

...

How shall we interpret ‘case 2|n’?
I Only bind n if it is not 2?

The meaning of a name

match mytuple:

case (x, x):

...

case 2 | n:

...

Don’t allow either of these variants!
I Bind all occurring names to values

I Each name is bound exactly once

The meaning of a name

I Simple names are binding targets

I Attributes provide value constraints

I The set of binding targets is deterministic

A Vision of the Future
Bespoke Patterns

Objects are complex

I An object can have more than
one ‘shape’

I There is more than one way to
look at/view an object

Objects are complex—example

4 + 3j = 5]38.9◦

case crect(x, y):

...

case cpolar(r, angle):

...

crect and cpolar are not classes, but views of an object

Objects are complex—example

4 + 3j = 5]38.9◦

case crect(x, y):

...

case cpolar(r, angle):

...

crect and cpolar are not classes, but views of an object

Objects are complex

class crect:

def __match__(s):

if isinstance(s, complex):

return Yes(s)

elif isinstance(s, vector2D):

return Yes(complex(s[0], s[1]))

else:

return No

Pattern Matching
Taylor Your Code to Your Data

The Road to Pattern Matching in Python

Special thanks to Brandt Bucher, Ivan Lev-
kivskyi, Daniel Moisset, Guido van Rossum, Talin

