The Road to Pattern Matching in Python

Tobias Kohn

Pattern matching is simple...

Pattern Matching
So, what is it really?

¢ "
Pattern matching. . .
» ...checks the structure/shape/type of the data
» ...selects code to handle a specific object
» ...extracts relevant pieces of information <

v 4

e
P 4
R
&
circle(x, vy, radius)
A=mxr?
£ ,
8 -

width

rectangle(x, y, width, height)
A=wxh
A Y

def

area (shape) :
if isinstance (shape, circle):
radius = shape.radius

return math.pi *» radius *x 2

elif isinstance (shape, rectangle) :
wd, ht = shape.width, shape.height

return wd * ht

area(Circle (40, 50, 100))

def

area (shape) :
if isinstance (shape, circle):
radius = shape.radius

return math.pi *» radius *x 2

elif isinstance (shape, rectangle) :
wd, ht = shape.width, shape.height

return wd * ht

area(Circle (40, 50, 100))

def

area (shape) :
if isinstance (shape, circle):
radius = shape.radius

return math.pi *» radius *x 2

elif isinstance (shape, rectangle) :
wd, ht = shape.width, shape.height

return wd * ht

area(Circle (40, 50, 100))

def area (shape) : /
match shape:
case circle(_, _, radius):

return math.pi * radius x*=* 2

case rectangle(_, _, wd, ht):
return wd x ht -

a = area(Circle (40, 50, 100))

Pattern Matching -

1. Run specialised code based on
type and structure of your object;

2. Automatically extract relevant
data/attributes from an object

A Closer Look at the Fabric
How do we make thmgs fit?

~,

Example the expression 2 » 34 + 1 has a tree-structure:

BinOp

A\ AN
\ Mult 1 BinOp M1
. \ (9 E ?%,
! 2 34 L 2 34

PP o e 5

/ BinOp(op='+’, left=BinOp(’#’, 2, 34), right=1)

e BlnOp (Bilnlp (2, "%, m), ‘47, 1) 3

\ # odd number

il 4 .
N 1% Matching objects to patterns

5

N » attributes are inherently unordered
\ » how do we map attributes to positions?

»=B Nt SSEEESBRVSEEs @ @+ |, \xpE 1)

%

=

\ N

Matching objects to patterns

\{

v

attributes are inherently unordered
how do we map attributes to positions?
Bl nQeles, e BV SEEsin @ ol)+ | |

use” Nwat chihaoisEE= (Gl Nt/ |

A 1)

"op’,

"right')

Pattern Matchlng Solving The Equation

Can we find values for variables in the pattern
such that the pattern and the subject coincide?

\ U
0

%gﬁﬁ ‘mA i
ales From the Past

The Origins of Pattern Match(ing

WY
.

GO

tuple unpacking

In the beginning was... tuple unpacking

Minimalistic design: a language without field or item access

With strong static types, consider tup = (123, ’abc’)
» tup[0] hastype int
» tup[1] hastype str
» what type has tup[1]1?

Question: how do we handle dynamic data structures?

Simply put, each ‘object’ is either a tuple or None, e.g. linked list:

primes = (2, (3, (5, (7, None))))

| e | BEd | BEd | EEa

(x, v LRSI

Answer: alternatives / conditional unpacking

def sum(mylist) :
reSuiltE =20
while True:
match mylist:
case (n, rest):
result += n
mylist = rest
case None:

return result

B

Answer: alternatives / conditional unpacking

def sum(mylist) :
match mylist:
case (m, (n, None)):
return m + n
case (n, rest):
return n + sum(rest)
case None:

return 0

. “T'“ 11 -~
_Changing the Present
~ | The Challenge of Embracing

ww

u.-.,\, Pattern matching in Python must be:

» isolated
do not affect anything outside the match statement

» familiar
use established syntax and conventions wherever possible

» compatible
work well with existing code

't“\‘

~~ Some immediate consequences

» Introduce a new keyword (match)
» match and case are soft keywords (context-sensitive)

» Patterns [a, b, c] and (a, b, c) areequivalent

» match must be a statement, not an expression

"f N IR R s s

,*,‘ﬁ/q Conditional vs unconditional unpacking
H) ‘ .

match some_ iterator:

case (a, b, ¢, 0):

case (a, b, ¢, xrest):

case x:
do not consume elements from the

iterator in this case

- Lo o F
o clle ad X CR0GE Ms 4
W Annotations / type hints |

~ Could we use type hints to specify the type/class of variables?
g yp pecity yp
match some_expr:

case (i: int):

case [s: str, t: str]:

- Lo o F
o clle ad X CR0GE Ms 4
W Annotations / type hints |

~ Could we use type hints to specify the type/class of variables?
y g yp pecity yp

match some_expr:

case (i: int):

case [s: str, t: str]:

No — annotations are never enforced by the interpreter

- Lo o F
o clle ad X CR0GE Ms 4
W Annotations / type hints |

Could we use type hints to specify the type/class of variables?

-

match some_expr:

case int (i) :

case [str(s), str(t)]:

No — annotations are never enforced by the interpreter

» is an isolated feature

» strives to reuse existing Python syntax

» still is new and different!

™mnm

O -

The meaning of a name

£ h i ' :
3o SRS ERisiens s Jon How shall we interpret ‘case pi’'?

match x: » matchonlyif x ==

case pi: » match anything and set pi := x

The meaning of a name

\4

Languages with declarations (var x = ...) can differentiate

\4

Others distinguish based on spelling: pi vs Pi

v

Only bind local names: pi vs math.pi

\4

Make all names binding targets (i.e. always overwrite p1i)

The meaning of a name

\4

\4

v

\4

Languages with declarations (var x = ...) can differentiate
Others distinguish based on spelling: pi vs Pi

Only bind local names: pi vs math.pi <+ most Pythonic

Make all names binding targets (i.e. always overwrite p1i)

The meaning of a name

match mytuple:
case (x, x): How shall we interpret ‘case (x, x)’?

» Tuple with two equal elements?

case 2 | n: » Bind x to the second element?

The meaning of a name

match mytuple:

case (X, X): 4 ,
How shall we interpret ‘case 2 |n’?

» Only bind n if it is not 27
case 2 | n:

The meaning of a name

match mytuple:
case (x, X): Don’t allow either of these variants!
» Bind all occurring names to values

case 2 | n: » Each name is bound exactly once

The meaning of a name

» Simple names are binding targets
» Attributes provide value constraints

» The set of binding targets is deterministic

A Vision of the Future
Bespoke Patterns

Objects are complex

» An object can have more than
one ‘shape’

» There is more than one way to
look at/view an object

Objects are complex—example

case crect (x,

case cpolar (r,

y) :

angle) :

Objects are complex—example

=T case crect(x, Vy):

— case cpolar (r, angle):

4 +3j = 5438.9°

crect and cpolar are not classes, but views of an object

Objects are complex

class crect:
def @ match_ (s):
if isinstance(s, complex) :

return Yes (s)

elif isinstance (s, vector2D):
return Yes (complex(s[0], s[1l]))

else:

return No

Pattern Matching
Taylor Your Code to Your Data

£ AR AR AR A b dthdd
Stk A bbb hdd bbbt

The Road to Pattern Matching in Python

